This module equips learners with essential web reconnaissance skills, crucial for ethical hacking and penetration testing. It explores both active and passive techniques, including DNS enumeration, web crawling, analysis of web archives and HTTP headers, and fingerprinting web technologies.
This module covers the fundamental enumeration skills of web fuzzing and directory brute forcing using the Ffuf tool. The techniques learned in this module will help us in locating hidden pages, directories, and parameters when targeting web applications.
Databases are an important part of web application infrastructure and SQL (Structured Query Language) to store, retrieve, and manipulate information stored in them. SQL injection is a code injection technique used to take advantage of coding vulnerabilities and inject SQL queries via an application to bypass authentication, retrieve data from the back-end database, or achieve code execution on the underlying server.
The SQLMap Essentials module will teach you the basics of using SQLMap to discover various types of SQL Injection vulnerabilities, all the way to the advanced enumeration of databases to retrieve all data of interest.
Passwords are still the primary method of authentication in corporate networks. If strong password policies are not in place, users will often opt for weak, easy-to-remember passwords that can often be cracked offline and used to further our access. We will encounter passwords in many forms during our assessments. We must understand the various ways they are stored, how they can be retrieved, methods to crack weak passwords, ways to use hashes that cannot be cracked, and hunting for weak/default password usage.
Buffer overflows are common vulnerabilities in software applications that can be exploited to achieve remote code execution (RCE) or perform a Denial-of-Service (DoS) attack. These vulnerabilities are caused by insecure coding, resulting in an attacker being able to overrun a program's buffer and overwrite adjacent memory locations, changing the program's execution path and resulting in unintended actions.
After gaining a foothold, elevating our privileges will provide more options for persistence and may reveal information stored locally that can further our access in the environment. Enumeration is the key to privilege escalation. When you gain initial shell access to the host, it is important to gain situational awareness and uncover details relating to the OS version, patch level, any installed software, our current privileges, group memberships, and more. Windows presents an enormous attack surface and, being that most companies run Windows hosts in some way, we will more often than not find ourselves gaining access to Windows machines during our assessments. This covers common methods while emphasizing real-world misconfigurations and flaws that we may encounter during an assessment. There are many additional "edge-case" possibilities not covered in this module. We will cover both modern and legacy Windows Server and Desktop versions that may be present in a client environment.
Privilege escalation is a crucial phase during any security assessment. During this phase, we attempt to gain access to additional users, hosts, and resources to move closer to the assessment's overall goal. There are many ways to escalate privileges. This module aims to cover the most common methods emphasizing real-world misconfigurations and flaws that we may encounter in a client environment. The techniques covered in this module are not an exhaustive list of all possibilities and aim to avoid extreme "edge-case" tactics that may be seen in a Capture the Flag (CTF) exercise.